
LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Using miniGMG as a Testbed for
Computer Science Research

Samuel Williams

1

Lawrence Berkeley National Laboratory

SWWilliams@lbl.gov

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Exascale Challenges

  Compared to today’s CPU processors, Exascale machines may see:
  O(100x) increase in peak flops per chip
  Massive (>>100x) increase in on-chip parallelism (<<GHz? for NTV)
  O(<<100x) increase in (fast) DRAM bandwidth
  systems with ~100,000 nodes (or more)
  minimal reductions (or possible increases) in latencies and overheads

  A number of performance challenges will emerge or persist.
  At 100K nodes, the performance of collectives can be poor.
  Codes will become increasingly memory-bound
  The massive increase in parallelism will challenge the straightforward

application of OpenMP to loop nests (finite parallelism in loop nests)
  Communication/Synchronization overheads may impede performance.
  Serial components receive a triple whammy:

•  Amdhal’s Law
•  in-order scalar cores
•  lower frequency

2

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Benchmarks…

  Benchmarks/compact apps that have…
  massive, regular, static parallelism within each loop nest,
  poor surface:volume ratios,
  regular communication patterns with large messages,
  minimal use of collectives

  …will likely run well on exascale machines.
  Porting such codes to exascale tends to be a software engineering

task, not a CS research challenge.

  We wish to focus on benchmarks that…
  represent key/fundamental computational characteristics of applications
  will be a challenge to run on exascale architectures (make for

interesting CS, AM, and co-design research projects)
  We have thus focused on multigrid…

3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Multigrid Introduction

  Linear Solvers (Ax=b) are ubiquitous in scientific computing...
  Combustion, Climate, Astrophysics, Cosmology, etc…

  Multigrid exploits the nature of elliptic PDEs to provide a hierarchical
approach with O(N) computational complexity.
  Geometric Multigrid is specialization in which the linear operator (A) is

simply a stencil on a structured grid (i.e. matrix-free)
  Applicable to small (yet very important) range of linear systems

4

“MG V-cycle”

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

miniGMG: Specification

5

Collection of
subdomains
owned by an
MPI process

one subdomain
of 643 elements

  Cubical domain decomposed into subdomains
 (“boxes”) and distributed across a machine.
  Fine-grid box size is selectable.

  smaller boxes mimic AMR MG challenges
  fewer boxes per process can be used to
 mimic some AMR MG combustion codes.

  Nominally, problems are usually small enough
 to fit into Xeon Phi or GPU device DRAM =>
 no PCIe transfers are required.
  Gauss Seidel, Red-Black (“GSRB”) relaxation in the v-cycle

  (other smoothers / stencils can be used)
  Configurable U-cycle (default stops at 43 subdomains)
  Selectable bottom solver

  GSRB’s, BiCGStab, CG, CA-BiCGStab, CA-CG, etc…
  Fixed 10 V-cycles

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

GSRB Operator

  High-performance baseline implementation…
  construction of the Laplacian, Helmholtz, and GSRB relaxation have

been fused to minimize data movement (=2x performance gain).
  Hybrid MPI+OpenMP implementation where everything is threaded

6

L = aαI – b∇β∇

helmholtz = a*alpha[i,j,k]*phi[i,j,k] - b*h2inv*(
 beta_i[i+1,j,k] * (phi[i+1,j,k] - phi[i ,j,k]) -
 beta_i[i ,j,k] * (phi[i ,j,k] - phi[i-1,j,k]) +
 beta_j[i,j+1,k] * (phi[i,j+1,k] - phi[i,j ,k]) -
 beta_j[i,j ,k] * (phi[i,j ,k] - phi[i,j-1,k]) +
 beta_k[i,j,k+1] * (phi[i,j,k+1] - phi[i,j,k]) -
 beta_k[i,j,k] * (phi[i,j,k] - phi[i,j,k-1])
)

phi[i,j,k] = phi[i,j,k] –
 lambda[i,j,k] * (helmholtz - rhs[i,j,k])

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

miniGMG Challenges

 Code has little reuse and large working sets:
  VC 2nd order => DRAM bandwidth-bound (flop:byte ~ 0.2)
  Cache working set ~350KB(planes) & >20MB(volume) per subdomain
  Only 1 stencil sweep per MPI communication step
  Small subdomains = significant time in communication
 (poor surface:volume)

 Quadruply nested parallelism:
  no individual loop longer than 64 iterations (bad for OpenMP)
  worse, 3 loops see exponentially decreasing parallelism

 Communication is variable and can become a bottleneck
  P2P MPI is initially a small fraction of the time, but as one descends

through the v-cycle, it becomes a bottleneck (message size doesn’t
decrease at the same rate as computation).

  Worse, Krylov bottom solvers are not O(N) and require collectives
 (become bottlenecks when weak scaled)

7

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Research Projects using miniGMG

  Currently using miniGMG for research into…
  Processor and network exploration/extrapolation XTune/ExaCT
  Communication-avoiding smoothers CACHE
  Compiler-based (CHiLL) smoother optimization XTune
  Communication-avoiding (bottom) Krylov solvers CACHE/ExaCT
  Numerical Challenges in CA Bottom Solvers CORVETTE
  Algorithmic exploration of FMG (F-Cycle) XTune
  High-order operators XTune/ExaCT
  Programming models (omp task/Habanero) DEGAS
  PGAS for P2P communication (UPC/CAF) DEGAS
  Resource management DEGAS
  Automatic overlap of communication/computation BAMBOO at UCSD

  I will detail a few here…

8

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Communication-Avoiding
Smoothers (CACHE/Xtune)

9

  Restructure the smooth()’s in the V-cycle to:
  load thick ghost zones
  perform some (inter-process) redundant computation
  and in effect, fuse multiple smooth()’s together.

  High-performance wavefront
 implementations require

  require fine-grained synch.
  parallelization in 2D or 3D
  Software prefetching to overlap
 communication and computation
  SIMDization of GSRB kernels

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Communication-Avoiding
Smoothers (CACHE/Xtune)

10

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

4.0x

SNBe KNC Fermi

M
G

 S
ol

ve
r

S
pe

ed
up

 R
el

at
iv

e
to

 B
as

el
in

e
S

N
B

e
P

er
fo

rm
an

ce

Comm. Avoiding
Optimized CUDA
Baseline CUDA
Nested OpenMP
Baseline OpenMP

  Restructure the smooth()’s in the V-cycle to:
  load thick ghost zones
  perform some (inter-process) redundant computation
  and in effect, fuse multiple smooth()’s together.

  High-performance wavefront
 implementations require

  require fine-grained synch.
  parallelization in 2D or 3D
  Software prefetching to overlap
 communication and computation
  SIMDization of GSRB kernels

  Benefit can be significant even
 on manycore architectures like
 Intel’s Xeon Phi.
  However, automation is a challenge

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500" 4000" 4500"

Ti
m
e%
(s
ec
on

ds
)%

Processes%(6%threads%each)%

CABiCGStab%Bo9om%Solver%on%Hopper%

BiCGStab"Time"

MGSolve"(BiCGStab)"

CABiCGStab"

MGSolve"(CABiCGStab)"

Communication-Avoiding
Bottom Solvers (CACHE/ExaCT)

  In geometric multigrid, one is often forced to switch to a Krylov
solver when further restriction of the grid become infeasible.

  Unfortunately…
  iterative Krylov methods are not O(N).
 Thus, weakly scaled problems require
 far more iterations to converge.
  Worse, global dot products are
 required on every Iteration.
  As the performance of collectives like
 MPI_AllReduce() do not scale well,
 these global dot products amplify
 the bottom solver challenge.

  Solution is to change the algorithm so
 that it aggregates these collectives
 together. (see poster by Erin Carson,
 Nick Knight, and Sam Williams)

11

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Numerical Challenges in
Comm.-Avoiding Krylov Solvers

  Communication-avoiding Krylov Methods are parameterized by
‘s’ (the number of steps in an s-step method).

  As ‘s’ increases, effects of finite precision are manifested.

  Increased precision or alternate formulations may address this.
  Is simply changing the loop vectors to double-double sufficient?
 or must one change the entire computation?
  Nominally, double-double is shunned due to cost.
  However, bottom solvers are tiny and usually latency-limited.
  Perhaps the additional cost can be amortized by MPI_WaitAll() or

MPI_AllReduce() time

  See Corvette(Xstack) poster (Cindy Gonzalez, Costin Iancu, …)

12

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Habanero
(DEGAS)

  The best communication-avoiding implementations on BGQ and
especially MIC are extremely complicated.
  Multiple thread teams map to inter- and intra-box parallelism.
  Teams of threads must be placed compactly. This is analogous to a

CUDA thread block with the caveat that the team can grow as large as
the chip (not just the SMX)

  On MIC, one must manually orchestrate parallelism, locality, and
synchronization via a omp parallel region.

  We are exploring Habanero as a productive alternative.
  an architecturally-derived HPT can be constructed
  async’s can be inserted into specific nodes to balance inter- and intra-

box parallelism

  Costin and Vivek can detail progress to date…

13

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

PGAS for Fast Communication
(DEGAS)

  Progressive optimization of on-node computation (e.g. DRAM
communication-avoiding, threading, SIMD, etc…) can result in P2P
MPI communication becoming a performance bottleneck.

  We are exploring the use of UPC to accelerate this data exchange.

  Costin Iancu / Nick Vrvilo will explain tomorrow…

14

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Questions?

15

